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ABSTRACT: A molecular imaging tool that provides for the
direct visualization of serotonin would significantly aid in the
investigation of neuropsychiatric disorders that are attributed
to its neuronal dysregulation. Here, the design, synthesis, and
evaluation of NeuroSensor 715 (NS715) is presented. NS715
is the first molecular sensor that exhibits a turn-on near-
infrared fluorescence response toward serotonin. Density
functional theory calculations facilitated the design of a
fluorophore based on a coumarin-3-aldehyde scaffold that
derives from an electron-rich 1,2,3,4-tetrahydroquinoxaline
framework, which provides appropriate energetics to prevent
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the hydroxyindole moiety of serotonin from quenching its fluorescence emission. Spectroscopic studies revealed that NS715
produces an 8-fold fluorescence enhancement toward serotonin with an emission maximum at 715 nm. Accompanying binding
studies indicated NS715 displays a 19-fold selective affinity for serotonin and a modest affinity for catecholamines over other
primary-amine neurotransmitters. The utility of NS715 toward neuroimaging applications was validated by selectively labeling
and directly imaging norepinephrine within secretory vesicles using live chromaffin cells, which serve as a model system for
specialized neurons that synthesize, package, and release only a single, unique type of neurotransmitter. In addition, NS715
effectively differentiated between cell populations that express distinct neurotransmitter phenotypes.
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S erotonin (S-hydroxytryptamine) is a critical monoamine
neurotransmitter in the central nervous system that plays a
key role in regulating emotion, mood, and sense of well—being.1
Serotonergic neurons synthesize, store, transport, and release
serotonin analogous to other specialized neurons that govern
only a single, unique type of monoamine neurotransmitter. The
biosynthesis of serotonin transpires within the cell bodies of
serotonergic neurons, which are localized to discrete cell
clusters within the brainstem.'”* The vesicular monoamine
transporter (VMAT) protein stores serotonin within secretory
vesicles at high concentrations (50—270 mM) and low pH
(~5).243 Secretory vesicles transport serotonin from cell bodies
to axon terminals along arborized projections that innervate
most brain regions, thereby maintaining the vesicle pool size
and its stores at steady-state levels for release of vesicular
serotonin into the synaptic cleft upon continued neural firing
events.” "

Deficient serotonin levels are implicated in the etiology of an
array of debilitating neuropsychiatric disorders which include
anxiety, bipolar disorder, and clinical depression.'*"*">
Selective serotonin reuptake inhibitors (SSRIs) are the most
prescribed class of psychotropic medications and utilized as
first-line agents to elevate serotonin levels."“**® The persistent
administration of SSRIs to serotonergic neurons indirectly
dampens negative feedback sensitivity to serotonin release,
thereby upregulating the synthesis and transport of seroto-
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nin.****” Accordingly, the enhanced activities promote higher

vesicle stores of serotonin and mobilize a larger vesicle pool size
in order to accommodate its progressive release.*®

Molecular imaging tools for monitoring vesicular serotonin
levels or the efficacy of SSRIs to modulate the vesicle pool size
and its stores primarily include serotonin autofluorescence,
fluorescent probes, and radiolabeled ligands.'***3"~%4><
Unfortunately, these technologies present certain drawbacks
such as displaying limited selectivity, allowing for only indirect
observation of serotonin, or requiring concurrent use of
invasive biomedical devices. Fluorescent molecular sensors are
a compelling technology for achieving the challenging goal of
noninvasively imaging serotonin, as they are proven tools that
allow for the selective labeling and direct visualization of similar
neurotransmitters in neuroimaging applications.10 For such
applications, fluorescent molecular sensors that are able to
absorb and emit light within the near-infrared (NIR) optical
imaging window (600—1000 nm) are highly desirable because
NIR light affords limited background fluorescence and high
penetration depths in biological samples.”""

Herein, we describe the design, synthesis, and evaluation of
NeuroSensor 715 (NS715, Scheme 1), which is the first

Received: September 3, 2015
Accepted: October 7, 2015
Published: October 31, 2015

DOI: 10.1021/acschemneuro.5b00235
ACS Chem. Neurosci. 2016, 7, 21-25


pubs.acs.org/chemneuro
http://dx.doi.org/10.1021/acschemneuro.5b00235
http://pubs.acs.org/page/policy/editorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

ACS Chemical Neuroscience

Scheme 1. Synthesis of NeuroSensor 715 (NS715)
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molecular sensor to demonstrate a turn-on NIR fluorescence
response with selective affinity for serotonin. The sensor is
designed to serve as a noninvasive imaging tool that would
allow for the selective labeling and direct visualization of
electron-rich vesicular monoamine neurotransmitters such as
serotonin. A tool for imaging vesicular serotonin would aid
efforts toward discerning the spatiotemporal dynamics of its
transport and bolster investigations into neuropsychiatric
disorders as well as the pharmacological effects of psychotropic
medications (e.g., SSRIs) on vesicular serotonin levels.

A short time ago, we developed NeuroSensor 521 (NS521)
as a turn-on fluorescent molecular sensor for the monoamine
neurotransmitters norepinephrine and dopamine.'® NS521 is
based on a distinctive platform that consists of an aryl moiety
appended to position C4 of a coumarin-3-aldehyde scaffold
(fluorophore). The primary amine group of an analyte
reversibly forms an imine with the fluorophore aldehyde
upon interaction under aqueous conditions. Association with
these fluorescence quenching neurotransmitters allows for an
enhanced internal charge transfer (ICT) across the activated
fluorophore in the excited state, thereby affording a marked
turn-on fluorescence response at 521 nm despite the fact that
catecholamines are strong fluorescence quenchers. Sensors of
this class are designed to capitalize on high concentrations of
monoamine neurotransmitters and acidic environment within
secretory vesicles of specialized neurons in order to afford
selective labeling over tylpical cellular amines that are present at
lower concentrations.'” > We validated NS521 as an effective
tool for neuroimaging applications by selectively imaging
norepinephrine in secretory vesicles of live and fixed cells.

Recently, we established a theoretical model for the rational
design of tunable fluorescent molecular sensors based on the
coumarin-3-aldehyde scaffold, thereby providing a strategy to
identify suitable candidates for ima%ing neurotransmitters with
a simple computational analysis."”> The model provides a
quantitative basis for predicting the fluorescence response of
potential NS521 derivatives toward quenching monoamine
neurotransmitters by interrelating the calculated molecular
orbital energy values (Eyomo and Ejyyo) of both platform
components. The model compares, in part, the Eyyo value for
a particular pendant aryl substituent to the E; o value for the
fluorophore in order to predict its fluorescence properties. The
fluorescence response of each sensor toward electron-rich
neurotransmitters depends on the extent of acceptor-excited
photoinduced electron transfer (a-PET) that occurs between its
quenching fragment and the NSS521 fluorophore (Figure 1).
Density functional theory (DFT) calculations provided the
calculated Eygyo value for the quenching fragment of
norepinephrine, dopamine, and serotonin as well as for the
fluorophore of NS521 (Table S1). The Eyopo value for both
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Figure 1. Energy diagram describing design considerations of NS715.
Energy values (hartrees) were calculated using DFT.

catechol fragments are comparable to the Ejqyo value for the
NS521 fluorophore, and therefore the sensor would not
undergo a-PET quenching upon careful selection of an
appropriate C4-aryl substituent. However, the Eygyo value
for the S-hydroxyindole fragment of serotonin is higher than
that of the NS521 fluorophore. As a result, PET quenching
could not be overcome, regardless of which substituent we
chose.

To develop a molecular sensor that would exhibit a turn-on
fluorescence response toward serotonin, we examined many
fluorophores that maintained the same structural topology of
the coumarin-3-aldehyde scaffold that has been so successful at
binding with primary-amine analytes. We settled upon a
fluorophore that derives from a 1,2,3,4-tetrahydroquinoxaline
(THQ) framework because calculations revealed the resultant
fluorophore maintained an extremely high Eyoyo value that is
nearly identical to the Eygyo value for the S-hydroxyindole
fragment of serotonin (Figure 1), and thereby would avoid PET
quenching effects upon association with serotonin. Based on
prior work with various pendant aryl substituents, we chose to
incorporate a thiophene moiety at the C4 position because it
facilitated facile sensor synthesis while maintaining the same
energetics of the fluorophore in its C4-unsubstituted form.
Calculations of only the fluorophore energetics allowed for
strict comparison of the effect that the THQ framework imparts
to the coumarin-3-aldehyde scaffold. The calculations also
indicated that the THQ-based fluorophore would have a much
smaller Eyono/Erumo gap value, thereby affording fluorescence
emission within the NIR spectral region.

NS71S was prepared as shown in Scheme 1. Compound 1
was acylated and demethylated under Friedel—Crafts con-
ditions to give intermediate 2 in high yield. A high-temperature
Wittig reaction with the appropriate phosphorane gave the
coumarin core (intermediate 3) in good yield. Regioselective
formylation under Vilsmeier conditions completed the syn-
thesis of NS715.

NS715 was screened with a number of relevant neuro-
transmitters using both absorption and fluorescence spectros-
copy. NS715 produces a large red-shift in its absorption
maximum from 500 to 546 nm upon association with serotonin
(Figure 2a). Interestingly, the absorption maximum of NS71S is
red-shifted by 52 nm compared to NS521 due to the THQ
framework. We were delighted to find that exciting NS71S at
559 nm (a common laser line) affords an emission maximum at
674 nm, which is well in the NIR spectral region (Figure 2b).
Moreover, we found that the addition of serotonin to NS715
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Figure 2. (a) Absorption and (b) fluorescence spectra of NS715 (20
uM) in buffer (S0 mM Na,$,0;, 120 mM NaCl, pH 5.0, 37 °C)
titrated with 0, 20, 40, 60, 80, 100, 120, 140, 160, and 180 uL of a 200
mM solution of serotonin. Titration conditions mimic the environ-
ment within secretory vesicles. Inset is the fit to a one-site binding
isotherm. I is the initial intensity of the sensor, and I is the measured
intensity upon adding serotonin. Intensities were measured at 780 nm.
Aex = 559 nm.

produced a marked increase in fluorescence intensity with a
red-shift in its emission maximum to 715 nm. The occurrence
of a red-shift in both the absorption and emission maximum
upon assocation with a primary amine analyte is similar to that
of other fluorescent molecular sensors that are based on the
coumarin-3-aldehyde scaffold, whereby imine formation mod-
ulates the spectroscopic profile of the sensor by promoting a
pronounced push—pull effect and an enhanced ICT across the
z-system of the fluorophore.'*>'>"?

The large red-shifts in the absorption and emission maxima
of NS715 permit the sensor to be used in a ratiometric mode,
whereby large fluorescence enhancements can be observed by
measuring the intensities at longer wavelengths (i.e,, 780 nm).
Table 1 summarizes the binding and spectroscopic data for the
association of NS715 with relevant vesicular neurotransmitters
that include the amino acid glutamate and the monoamines
norepinephrine, dopamine, and serotonin. NS715 displayed a
weak affinity for glutamate along with a modest fluorescence
enhancement. NS715 exhibited a much higher affinity for the
catecholamines, which is presumably attributed to secondary
interactions between the pendant thiophene of the sensor and
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Table 1. Association Constants and Spectroscopic Properties
for NS715 Binding to Neurotransmitters

neurotransmitter K, (M)° Ay, (nm)® I /I

serotonin 409 46 8.0
dopamine 145 37 4.0
norepinephrine 129 37 3.4
glutamate 22 30 3.0
epinephrine®* nd nd nd

“K, values were measured using fluorescence spectroscopy. Error in K,
values are +10% based on triplicate titrations. “Bathochromic shift in
absorption wavelength using a saturating concentration of neuro-
transmitter. I, is the initial fluorescence intensity of the sensor, and I,
is the maximal fluorescence intensity that was obtained from the
theoretical fit to a one-site binding isotherm using a saturating amount
of neurotransmitter. Intensities were measured at 780 nm. 4., = 559
nm. dEpinephrine is a secondary-amine analyte which cannot form an
imine with NS715, and thereby does not alter its spectroscopic profile.
“nd = not detectable.

the catechol group. This selectivity and fluorescence response
toward the catecholamines is very similar to that of NSS21.

Most importantly, NS715 displayed a remarkable 8-fold
fluorescence enhancement toward and relatively high affinity
for serotonin. Indeed, the affinity of NS715 for serotonin is
approximately 19-fold greater than its affinity for glutamate. We
presume the selective affinity for serotonin results from the
large indole group of serotonin providing stronger secondary
interactions with the pendant thiophene of NS71S. Clearly,
NS715 demonstrates sufficiently high association constants for
labeling serotonin within secretory vesicles of specialized cells
given its high concentrations (50—270 mM). Further
evaluation of NS715 using the secondary-amine neuro-
transmitter epinephrine resulted in no changes to its absorption
and fluorescence properties. Combined with its desirable
spectroscopic properties and selective affinity for high
concentrations of primary-amine neurotransmitters, NS715 is
aptly suited for neuroimaging applications. Thus, we decided to
validate the utility of NS71S using chromafhin cells, which serve
as a model system for specialized neurons that synthesize,
package, and release only a single type of monoamine
neurotransmitter such as serotonergic neurons.

Populations of chromaffin cells were separated into distinct
norepinephrine-enriched and epinephrine-enriched fractions
using standard methods. As designed, NS715 should bind to
norepinephrine and strongly fluoresce, but not to epinephrine
because it is a secondary-amine neurotransmitter. Both
populations of cells were incubated with NS715, washed, and
subsequently imaged using confocal microscopy (Figure 3). We
utilized the 458 and 633 nm excitation wavelengths to
preferentially excite the unbound and bound forms of NS715,
respectively. When selectively excited at 633 nm, only the
norepinephrine-enriched cells revealed the punctate pattern
with strong fluorescence that is expected for labeling the very
high concentrations of norepinephrine in secretory vesicles
(Figure 3e). The epinephrine-enriched cells showed marginal
fluorescence, which can be attributed to NS715 binding to the
very low levels of norepinephrine that are present within this
type of cell population (Figure 3b). Neither cell population
showed any appreciable fluorescence upon exciting at 458 nm,
thereby indicating that any potentially unbound sensor was
removed during the washing step (Figure 3a and d). Further
analysis indicated that the average total cellular fluorescence
intensity of the norepinephrine-enriched cells was 15-fold
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Figure 3. Epinephrine-enriched cells (a—c) incubated with NS715 (10 uM): (a) A, = 458 nm; (b) A, = 633 nm; (c) brightfield image.
Norepinephrine-enriched cells (d—f) incubated with NS71S (10 uM): (d) A = 458 nm; (e) A, = 633 nm; (f) brightfield image. Fluorescence was
visualized using a 650—710 nm band pass filter. (g) Average fluorescence intensity for norepinephrine- and epinephrine-enriched (NE and EP,

respectively) cells was 12.42 + 1.75 and 0.85 + 0.29, respectively (n = 12).

higher than that of the epinephrine-enriched cells (Figure 3g).
The results revealed that NS715 can differentiate between cell
populations that express distinct neurotransmitters.

In summary, we developed NS715 as the first molecular
sensor that exhibits a turn-on NIR fluorescence response upon
selective detection of serotonin. DFT calculations facilitated the
design of a fluorophore based on a coumarin-3-aldehyde
scaffold that derives from a THQ framework, which has
appropriate energetics for preventing a-PET quenching by
serotonin. The utility of NS715 was demonstrated by imaging
norepinephrine in secretory vesicles of chromaffin cells, which
serve as a common model system for excitatory neurons.
NS715 is a noninvasive imaging tool that allows for the
selective labeling and direct visualization of select monoamine
neurotransmitters such as serotonin.
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